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Theory of Super Phase-Space Representations
and Supercoherent States

Sumiyoshi Abé
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The theory of a class of phase-space representations is developed for boson—fermion
systems. The super phase-space operator is constructed and its properties are dis-
cussed. It is shown that the supersymmetric antinormal ordering rule corresponds to
the supercoherent-state representation. Thus, the supersymmetric nature of the super-
coherent states is revealed from the viewpoint of the phase-space representations.

1. INTRODUCTION

Method of phase-space representations has been attracting continuous inter-
est in quantum physics (Agarwal and Wolf, 1970; Balazs and Jennings, 1984;
Hillery et al, 1984; Kim and Noz, 1991; Scully and Zubairy, 1997). It allows
to express the quantum expectation value of an observable as the statistical av-
erage of a corresponding physical quantity with respect to a certain distribution
function in quantum phase-space. The celebrated examples are the Wigner distri-
bution function, the Sudarshan—Glaulbedistribution function, and the Husimi
Q-distribution function, which correspond to the Weyl ordering, the normal or-
dering, and the antinormal ordering of the product of the bosonic creation and
annihilation operators, respectively.

Compared with the long tradition of the studies of phase-space representations
of bosons, fermionic theory is relatively new. It was about a decade ago that the
Wigner distribution function of fermions was constructed in Abe and Suzuki (1989)
and applied to the optical Dicke model in Abe and Suzuki (1992). The discussion
was further generalized to the case of supersymmetric systems in Abe (1992),
where the super Wigner function was defined and its properties were analyzed. In
these works, only the Wigner distribution function and the associated Weyl ordering
rule were considered. Therefore, a question remains regarding the existence of a
class of representations including tRe and Q-distribution functions.
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In this paper, we establish a class of phase-space representations of boson—
fermion systems. We construct the phase-space operator which yields quantum-
classical correspondence in super phase-space. Then, we discuss its invariance
under supersymmetry transformations. It is shown that the phase-space operator is
supersymmetric if and only if the ordering rules for boson and fermion are identi-
cal. We also show that the phase-space representation with the antinormal ordering
is equivalent to the supercoherent-state representation. Thus, the supersymmet-
ric nature of the supercoherent state is revealed from the phase-space approach.
Throughout this paper, single-mode bosonic and fermionic fields are treated for
simplicity, but extension of the whole discussion to the case of multimode fields
is straightforward.

2. ONE-PARAMETER FAMILY OF FERMIONIC
PHASE-SPACE OPERATORS

It seems appropriate to begin this section with a brief summary of the theory
of phase-space representations of the boson. After it, we shall discuss the fermionic
theory in correspondence to the bosonic theory.

The creation and annihilation operators of the bog$onanda, satisfy the
following commutation relations:

[a,a =1, [a,4] =[a,a']=0. @)

The bosonic phase-space operator is defined by Agarwal and Wolf (1970)
N 1

Af")(a, a®) = — / dzzexp[—%z*z + @' —a")z—z"@a - oz)] . @

Here,z anda are ordinary complex variables anddz = d(Rez)d(Im 2). In par-
ticular, « anda* label the complex classical phase spagéds a real parameter.
This operator satisfies the relation

“ ~(_ 1
TIAR (or, DAL Dotz 03)] = ~5 e — av2). 3)

The phase-space representation of the density opesgtufrtfie bosonic system
is given by

Fo? (e, @) = Tr{ A (@, ). @

Using the identical relation, Tpg) = 1, and the complex Fourier transformation
of the delta function

iz / d%a explt(a*z — z')] = §@(2) = §(Rez)s(Im 2), (5)
T
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we see that the phase-space function in Eq. (4) is normalized:
/ d?aF* (o, a*) = 1. (6)

The phase-space operator in Eq. (2) gives the correspondence relation between the
quantum operator and its classical counterpart in phase space:

Q. (a ah) = / d?aQ(a, a*)A®(a, a*), )

Qla, a*) = %Tr[(c}%(a, ahAS® (a, o], (8)

whererb(é, ah) is thes,-ordered operator obtained by quantizing the classical
quantity Q(«, a*) which is a polynomial function o anda*. The three cases,

S = 0,+1, are particularly important, = 0,5, = —1, ands, = +1 correspond

to the Weyl ordering, the normal ordering, and the antinormal ordering, respec-
tively. For example,

1 .
@raw = E(éﬂéur 3a") = / e a*a A(a, o), (9)
(afa)y = afa = / e a*aAS e, o), (10)

(a'a)ay = 84" = /dza a*aﬁgrl)(a, a®). (11)

CorrespondinglyF(«, «*), FS (e, «*), and F{™(a, o*) are the Wigner dis-
tribution function, the Sudarshan—Glaulkedistribution function, and the Husimi
Q-distribution function, respectively. The quantum expectation value of the
sy,-ordered physical quantity in Eq. (7) can be expressed as the phase-space average
of the corresponding classical quantity with respecFFﬁ%)(a, a*):

T Qs (& ah)] = / d2aQ(a, a*)F¥ (e, a*). (12)

Now, we wish to develop the theory of the phase-space representations of the

fermion. The fermionic creation and annihilation operatf)itsandﬁ, satisfy the
anticommutation relations

b,b'y=1, (bby=b",b})=0. (13)

Let us define the following fermionic phase-space operator:

A (B, ) = fdzg exp[—%{*é + (' - g7 —¢r(b- ﬂ)] : (14)
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In this equationg, ¢*, 8, andg* are the anticommuting classical variables called
the Grassmann-odd variables, or simply G@dd variables¢ ¢* is G—everl.TFor
example, (2 =2 = ¢¢* 4+ "0 =0, ((B*) = B¢* = =B, (b)) =¢*b' =
—b'¢*, and so on. Th&-integrations are normalized as follows:

fdzccz* =1, /dZCC =/d2cc* =0, /dzc =0. (15

It can be found that the phase-space operator in Eq. (14) satisfies the relation

Tro[AS (81, 87) AL (Ba, B5)] = 5P (B1 — o), (16)
wheres@ () is theG-delta function
5@(p) = p p* = f o expE=(c*f — O] (17)

An important point is the fact that Jiin this equation is not the ordinary trace
operation but the graded trace operation, which is, in the Fock representation,
defined by

Trg(Q) = Y (-)"(nIQIn), (18)

n=0,1

where{|0), |1) = E)T|O)} is the Fock basis. The ground stéf is assumed to be
G-even, that is8|0) = |0)8 with G-odd 8. The graded trace operation has the
cyclicity property for two special casésTry(XY) = Try(Y X) if both X and Y
areG-even, Tj(XY) = —Try(Y X) if both X andY areG-odd. Like the bosonic
phase-space operatt&{-,s')(ﬁ, B*) defines the correspondence relation between the
basic quantum operators and the classical phase-space variables:

b= / d28 BAS (B, B, Trg[DAS (8, 8%)] = B, (19)

b = [ A5 o8 T[T 8B =5 (20

& in Eq. (14) is a real parameter, which is responsible for the operator ordering
rule, analogously to the bosonic theory. The cages 0,5 = —1, ands = +1
correspond to the Weyl ordering, the normal ordering, and the antinormal ordering,
respectively. For example,

ata 1+~ an ~
(' = 56/~ B') = [ &6 55305, ) (21)

2The statements made in Abe (1992) and Abe and Suzuki (1989, 1992) regarding the cyclicity property
of the graded trace operation should be corrected as follow§XV) = £Trg(XY), where the
sign —(+) is taken for the case when bo¥andY are G-odd (G-even). However, there does not
exist the cyclicity property wheiX andY are statistically different from each other (e.g., whéis
G-even wherea¥ is G-odd).
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(WBN=N6=fd%ﬂwA$W&ﬂﬂ, (22)
(B'B)an = —Bb' = / o2p g BACD (B, 5%). (23)

In the earlier discussions (Abe, 1992; Abe and Suzuki, 1989, 1992), the
Wigner distribution function of the fermion has been constructed using the graded
trace operation. In that case, the quantum expectation value of the Weyl-ordered
operatorQy (b, BT) is expressed as the phase-space average GFfrmurier trans-
formation of the corresponding classical quani@ys, 8*) with respect to the
Wigner distribution function, not as the phase-space averag®(pf 8*) itself.

Here, we wish to examine another possibility: we propose to define the phase-space
distribution function using the ordinary trace operation. That is,

FO(B, %) = Tr[p: A% (B8, 8], (24)

wherep; is the density operator of the fermionic system. There are two advanta-
geous points in this definition. First of all, in contrast to the earlier definition using
the graded trace operation, the normalization condlfmﬁﬂ F(s')(ﬂ B*)=1is
immediately fulfilled, becausﬁdz,BA(S‘)(ﬁ B*) = 1and Trf;) = 1. Second, the
guantum expectation value of teeordered quantity

3, (b, b) = / Q8. FIAS (B, 5%) (25)

can be expressed directly as the phase-space aver&ygob*) with respect to
F(8, B*):

Tr[3 Oy (b, B)] = / Q8. B)F (. BY). (26)

As an example, let us consider a single fermion at finite temperature. The
canomcal den5|ty operator is given by = exp(~Hw)/Tr[exp(~Hw)], where
Hw (b, b )= b'b— 1/2 is the system Hamiltoniarh{p = kg T = 1). This form
of the Hamiltonian corresponds to the Weyl ordering. The classical counterpart
of HW(b b')is H(B, p* ) = B*B. The associated Wigner function is calculated to
be Ff (ﬂ B*) = Tr[,ofAfO)(ﬂ B%)] = BB* + (1/2) tanh (¥2). Then, the familiar
result is obtained for the internal energﬁw fdzﬂH(ﬂ B* )Ff (ﬂ B*) =
—(1/2) tanh (¥2).

Thus, we see the complete parallelism between the phase-space representa-
tions of thes,-ordered bosonic theory and tkeordered fermionic theory. This
parallelism becomes essential when the supersymmetric systems are treated.
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3. SUPERSYMMETRIC-ORDERED THEORY

Consider a system composed of the boson and the fermion. The total phase-
space operator is given by the product of the bosonic and fermionic phase-space
operators:

AS S (o, a*, B, %)

= iz // d%z ¢ exp(—%z*z— Seve+ Alz—7A+ Bl - g*é.),
b4 2 2

(27)

whereA', A, B, andB are the displaced operators
A=3a—aq, ATzéT—a*, (28)
B=b-p B =b —p~ (29)

Now, let us examine the supersymmetry transformation of the displaced
operators as follows:

A— A+ By, Al - AT+9I§T, (30)
B B+Ag, B — B 1A (31)
where6 is a nilpotent realG-odd variable, i.e.p B = —B# and 62 = 0, for
example. This transformation is generated by the Hermitian operator
G=AB"+BA" (32)
In fact, we see
[0G, Al = By, [0G, A"l =6B' (33)
[0G, Bl = A9, [0G, B =6A. (34)

An important point is that the above transformation can be compensated by the
following change of the integration variables:

zZ— z+ g6, - 7"+ 0¢7, (35)
.= ¢+ 2, F =+ 07" (36)

if and only if
S =5 (37)

In addition, the graded Jacobian factor defined in terms of the graded determinant
(the superdeterminant) (Berezin, 1987) associated with Eqgs. (35) and (36) is equal
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to unity:
1060 )
0 1 006 10\ (6 0\(1 0\ (6 0
1y 0 10 =de{(o 1)‘(0 9)(0 1) (o —9)]
0001

—1
10
X del(o 1)

=1, (38)

and therefore the measure of integratifa ®¢ in Eq. (27) remains invariant.
Thus, we conclude that

A(SSJSY(Ol! O{*, ﬂ! ﬁ*)
= iz // d%z o?¢ exp[—§(z*z+ c*t)+ Alz—7A+ B¢ - ;*é] (39)
b4 2

is the supersymmetric phase-space operator, which is referred to as the super
phase-space operator. The super phase-space distribution function

Fée o, B, ) = TH{PAS)s s @, B, 87)] (40)
is now regarded as a superfield. It admits the superfield expansion
FOa, o, B, B7) = fole, @) + Bf7 (o, @) + faler, @)
+ B B* faler, @), (41)

where fo and f, are the real-valued functions arfg and f;* are complexG-odd
functions.

4. SUPERCOHERENT STATES

Using the super phase-space operator in Eq. (39), we can obtain the super-
symmetric generalization of a class of phase-space distribution functions including
the Wigner distribution functions(= 0), the Sudarshan—GlaubBrdistribution
function s = —1), and the Husim@Q-distribution function¢ = +1). Here, of par-
ticular interest for us is the supersymmet@erepresentation, since it is expected
to be connected directly with the supercoherent states.

The supercoherent states have repeatedly been discussed in the literature.
Examples are found in Aragone and Zypman (1986), Fatygal. (1991),
Jayaramaret al. (1999), and Kosteleckgt al. (1993). Similarly to Fatygat al.

(1991) and Kosteleckgt al.(1993), we define the supercoherent state as follows:

o, &, B, B%) = exp@ia — a*a) exp(b' g — p*0)0, 0, (42)
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where|0, 0) is the product of the ground states of the boson and the fermion.
ando™ are the ordinary complex variables, whergiaand g* are the complex
G-odd variables. This is the simultaneous eigenstageanfd b:

ala, o B, %) = ala,a", B, %), (43)
bla, o, B, %) = B la, @, B, B*). (44)
It is a normalized state and possesses the (over) completeness

%/ e 028 o, a*, B, B) (@, ", B, B*] = 1. (45)

The supercoherent state in Eq. (42) is simply the product of the bosonic and
fermionic coherent states. Based only on this fact, one hardly sees its supersymmet-
ric nature. We wish to clarify this point by showing that, in fact, the supercoherent
state corresponds tn(sté)y(a a*, B, B*), which is supersymmetric as shown in
Section 3.

To see the explicit relation between the super phase-space op&&éﬁ:{u
o*, B, p*) and the supercoherent state, let us employ the well-known formula,
expX +Y) = expKX) exply — —[X Y1) with [X, Y] being ac number, and rewrite

the operator as follows:
1 - R
A o p ) = o [[ dzdcenczA-cB)

x expA z+ B'¢). (46)

Inserting Eq. (45) between the two exponential operators in the integrand in Eq.
(46) and using Egs. (5) and (17), we find

AS S, o, B, B7)

= f/ 'z /f 2o’ a2 exple” — o)z — Z°( — @)]

x exp[(B™ — )¢ — ¢*(B' = B)] |, ™, B', B) ', o™, B', B
1
:;'a!a*lﬂiﬁ*>(ala*vﬂ!ﬁ*|' (47)

Therefore, as expecteﬁéﬁéﬂ(a, a*, B, B*) corresponds to the supercoherent-state
representation. Conversely, the supersymmetric aspect of the supercoherent state

is thus clarified from the viewpoint of the theory of phase-space representations.

5. CONCLUSION

We have developed the theory of phase-space representations of the boson-
fermion system. We have clarified the supersymmetric structure of the super
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phase-space operators associated with a class of the ordering rules. It has been
shown that the supersymmetric antinormal ordering rule corresponds to the
supercoherent-state representation. In this way, the supersymmetric nature of the
supercoherent state is revealed.
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