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The theory of a class of phase-space representations is developed for boson–fermion
systems. The super phase-space operator is constructed and its properties are dis-
cussed. It is shown that the supersymmetric antinormal ordering rule corresponds to
the supercoherent-state representation. Thus, the supersymmetric nature of the super-
coherent states is revealed from the viewpoint of the phase-space representations.

1. INTRODUCTION

Method of phase-space representations has been attracting continuous inter-
est in quantum physics (Agarwal and Wolf, 1970; Balazs and Jennings, 1984;
Hillery et al., 1984; Kim and Noz, 1991; Scully and Zubairy, 1997). It allows
to express the quantum expectation value of an observable as the statistical av-
erage of a corresponding physical quantity with respect to a certain distribution
function in quantum phase-space. The celebrated examples are the Wigner distri-
bution function, the Sudarshan–GlauberP-distribution function, and the Husimi
Q-distribution function, which correspond to the Weyl ordering, the normal or-
dering, and the antinormal ordering of the product of the bosonic creation and
annihilation operators, respectively.

Compared with the long tradition of the studies of phase-space representations
of bosons, fermionic theory is relatively new. It was about a decade ago that the
Wigner distribution function of fermions was constructed in Abe and Suzuki (1989)
and applied to the optical Dicke model in Abe and Suzuki (1992). The discussion
was further generalized to the case of supersymmetric systems in Abe (1992),
where the super Wigner function was defined and its properties were analyzed. In
these works, only the Wigner distribution function and the associated Weyl ordering
rule were considered. Therefore, a question remains regarding the existence of a
class of representations including theP- andQ-distribution functions.
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In this paper, we establish a class of phase-space representations of boson–
fermion systems. We construct the phase-space operator which yields quantum-
classical correspondence in super phase-space. Then, we discuss its invariance
under supersymmetry transformations. It is shown that the phase-space operator is
supersymmetric if and only if the ordering rules for boson and fermion are identi-
cal. We also show that the phase-space representation with the antinormal ordering
is equivalent to the supercoherent-state representation. Thus, the supersymmet-
ric nature of the supercoherent state is revealed from the phase-space approach.
Throughout this paper, single-mode bosonic and fermionic fields are treated for
simplicity, but extension of the whole discussion to the case of multimode fields
is straightforward.

2. ONE-PARAMETER FAMILY OF FERMIONIC
PHASE-SPACE OPERATORS

It seems appropriate to begin this section with a brief summary of the theory
of phase-space representations of the boson. After it, we shall discuss the fermionic
theory in correspondence to the bosonic theory.

The creation and annihilation operators of the boson,â† and â, satisfy the
following commutation relations:

[â, â†] = 1, [â, â] = [â†, â†] = 0. (1)

The bosonic phase-space operator is defined by Agarwal and Wolf (1970)

1̂
(sb)
b (α, α∗) = 1

π2

∫
d2zexp

[
−sb

2
z∗z+ (â† − α∗)z− z∗(â− α)

]
. (2)

Here,z andα are ordinary complex variables andd2z≡ d(Rez)d(Im z). In par-
ticular,α andα∗ label the complex classical phase space.sb is a real parameter.
This operator satisfies the relation

Tr
[
1̂

(sb)
b (α1, α∗1)1̂(−sb)

b (α2, α∗2)
] = 1

π
δ(2)(α1− α2). (3)

The phase-space representation of the density operator ˆρb of the bosonic system
is given by

F (sb)
b (α, α∗) = Tr

[
ρ̂b1̂

(sb)
b (α, α∗)

]
. (4)

Using the identical relation, Tr( ˆρb) = 1, and the complex Fourier transformation
of the delta function

1

π2

∫
d2α exp[±(α∗z− z∗α)] = δ(2)(z) ≡ δ(Rez)δ(Im z), (5)
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we see that the phase-space function in Eq. (4) is normalized:∫
d2αF (sb)

b (α, α∗) = 1. (6)

The phase-space operator in Eq. (2) gives the correspondence relation between the
quantum operator and its classical counterpart in phase space:

Q̂sb
(â, â†) =

∫
d2αQ(α, α∗)1̂(sb)

b (α, α∗), (7)

Q(α, α∗) = 1

π
Tr
[
(Q̂sb

(â, â†)1̂(−sb)
b (α, α∗)

]
, (8)

whereQ̂sb
(â, â†) is thesb-ordered operator obtained by quantizing the classical

quantity Q(α, α∗) which is a polynomial function ofα andα∗. The three cases,
sb = 0,±1, are particularly important:sb = 0, sb = −1, andsb = +1 correspond
to the Weyl ordering, the normal ordering, and the antinormal ordering, respec-
tively. For example,

(â†â)W = 1

2
(â†â+ ââ†) =

∫
d2α α∗α1̂(0)

b (α, α∗), (9)

(â†â)N = â†â =
∫

d2α α∗α1̂(−1)
b (α, α∗), (10)

(â†â)AN = ââ† =
∫

d2α α∗α1̂(+1)
b (α, α∗). (11)

Correspondingly,F (0)
b (α, α∗), F (−1)

b (α, α∗), andF (+1)
b (α, α∗) are the Wigner dis-

tribution function, the Sudarshan–GlauberP-distribution function, and the Husimi
Q-distribution function, respectively. The quantum expectation value of the
sb-ordered physical quantity in Eq. (7) can be expressed as the phase-space average
of the corresponding classical quantity with respect toF (sb)

b (α, α∗):

Tr[ρ̂bQ̂sb
(â, â†)] =

∫
d2αQ(α, α∗)F (sb)

b (α, α∗). (12)

Now, we wish to develop the theory of the phase-space representations of the

fermion. The fermionic creation and annihilation operators,b̂
†

andb̂, satisfy the
anticommutation relations

{b̂, b̂
†} = 1, {b̂, b̂} = {b̂†, b̂

†} = 0. (13)

Let us define the following fermionic phase-space operator:

1̂
(sf )
f (β, β∗) =

∫
d2ζ exp

[
−sf

2
ζ ∗ζ + (b̂

† − β∗)ζ − ζ ∗(b̂− β)
]
. (14)
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In this equation,ζ, ζ ∗, β, andβ∗ are the anticommuting classical variables called
the Grassmann-odd variables, or simply theG-odd variables.ζ ζ ∗ is G-even. For
example, ζ 2 = ζ ∗2 = ζ ζ ∗ + ζ ∗ζ = 0, (ζβ∗)∗ = βζ ∗ = −ζ ∗β, (b̂ζ )† = ζ ∗b̂† =
−b̂
†
ζ ∗, and so on. TheG-integrations are normalized as follows:∫

d2ζ ζ ζ ∗ = 1,
∫

d2ζ ζ =
∫

d2ζ ζ ∗ = 0,
∫

d2ζ = 0. (15)

It can be found that the phase-space operator in Eq. (14) satisfies the relation

Trg
[
1̂

(sf )
f (β1, β∗1) 1̂(−sf )

f (β2, β∗2)
] = δ(2)(β1− β2), (16)

whereδ(2)(β) is theG-delta function

δ(2)(β) ≡ β β∗ =
∫

d2ζ exp[±(ζ ∗β − β∗ζ )]. (17)

An important point is the fact that Trg in this equation is not the ordinary trace
operation but the graded trace operation, which is, in the Fock representation,
defined by

Trg(Q̂) =
∑

n=0,1

(−)n〈n|Q̂|n〉, (18)

where{|0〉, |1〉 = b̂
†|0〉} is the Fock basis. The ground state|0〉 is assumed to be

G-even, that is,β|0〉 = |0〉β with G-oddβ. The graded trace operation has the
cyclicity property for two special cases:2 Trg(X̂Ŷ) = Trg(Ŷ X̂) if both X̂ and Ŷ
areG-even, Trg(X̂Ŷ) = −Trg(Ŷ X̂) if both X̂ andŶ areG-odd. Like the bosonic
phase-space operator,1̂(sf )

f (β, β∗) defines the correspondence relation between the
basic quantum operators and the classical phase-space variables:

b̂ =
∫

d2β β1̂
(sf )
f (β, β∗), Trg

[
b̂1̂(sf )

f (β, β∗)
] = β, (19)

b̂
† =

∫
d2β1̂

(sf )
f (β, β∗)β∗, Trg

[
1̂

(sf )
f (β, β∗) b̂

†] = β∗. (20)

sf in Eq. (14) is a real parameter, which is responsible for the operator ordering
rule, analogously to the bosonic theory. The casessf = 0, sf = −1, andsf = +1
correspond to the Weyl ordering, the normal ordering, and the antinormal ordering,
respectively. For example,

(b̂
†
b̂)W = 1

2
(b̂
†
b̂− b̂b̂

†
) =

∫
d2β β∗β1̂(0)

f (β, β∗), (21)

2 The statements made in Abe (1992) and Abe and Suzuki (1989, 1992) regarding the cyclicity property
of the graded trace operation should be corrected as follows. Trg(X̂Ŷ) = ±Trg(X̂Ŷ), where the
sign−(+) is taken for the case when botĥX andŶ areG-odd (G-even). However, there does not
exist the cyclicity property when̂X andŶ are statistically different from each other (e.g., whenX̂ is
G-even whereaŝY is G-odd).
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(b̂
†
b̂)N = b̂

†
b̂ =

∫
d2β β∗β1̂(−1)

f (β, β∗), (22)

(b̂
†
b̂)AN = −b̂b̂

† =
∫

d2β β∗β1̂(+1)
f (β, β∗). (23)

In the earlier discussions (Abe, 1992; Abe and Suzuki, 1989, 1992), the
Wigner distribution function of the fermion has been constructed using the graded
trace operation. In that case, the quantum expectation value of the Weyl-ordered
operatorQ̂W(b̂, b̂

†
) is expressed as the phase-space average of theG-Fourier trans-

formation of the corresponding classical quantityQ(β, β∗) with respect to the
Wigner distribution function, not as the phase-space average ofQ(β, β∗) itself.
Here, we wish to examine another possibility: we propose to define the phase-space
distribution function using the ordinary trace operation. That is,

F (sf )
f (β, β∗) ≡ Tr

[
ρ̂ f1̂

(sf )
f (β, β∗)

]
, (24)

where ˆρ f is the density operator of the fermionic system. There are two advanta-
geous points in this definition. First of all, in contrast to the earlier definition using
the graded trace operation, the normalization condition

∫
d2βF (sf )

f (β, β∗) = 1 is
immediately fulfilled, because

∫
d2β1̂

(sf )
f (β, β∗) = 1 and Tr( ˆρ f ) = 1. Second, the

quantum expectation value of thesf -ordered quantity

Q̂sf
(b̂, b̂

†
) =

∫
d2βQ(β, β∗)1̂(sf )

f (β, β∗) (25)

can be expressed directly as the phase-space average ofQ(β, β∗) with respect to
F (sf )

f (β, β∗):

Tr[ρ̂ f Q̂sf
(b̂, b̂

†
)] =

∫
d2βQ(β, β∗)F (sf )

f (β, β∗). (26)

As an example, let us consider a single fermion at finite temperature. The
canonical density operator is given by ˆρ f = exp(−Ĥ W)/Tr[exp(−Ĥ W)], where
Ĥ W(b̂, b̂

†
) = b̂

†
b̂− 1/2 is the system Hamiltonian (hω = kBT ≡ 1). This form

of the Hamiltonian corresponds to the Weyl ordering. The classical counterpart
of Ĥ W(b̂, b̂

†
) is H (β, β∗) = β∗β. The associated Wigner function is calculated to

be F (0)
f (β, β∗) = Tr[ρ̂ f1̂

(0)
f (β, β∗)] = ββ∗ + (1/2) tanh (1/2). Then, the familiar

result is obtained for the internal energy:〈Ĥ W〉 =
∫

d2βH (β, β∗)F (0)
f (β, β∗) =

−(1/2) tanh (1/2).
Thus, we see the complete parallelism between the phase-space representa-

tions of thesb-ordered bosonic theory and thesf -ordered fermionic theory. This
parallelism becomes essential when the supersymmetric systems are treated.
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3. SUPERSYMMETRIC-ORDERED THEORY

Consider a system composed of the boson and the fermion. The total phase-
space operator is given by the product of the bosonic and fermionic phase-space
operators:

1̂
(sb,sf )
b,f (α, α∗, β, β∗)

= 1

π2

∫∫
d2z d2ζ exp

(
− sb

2
z∗z− sf

2
ζ ∗ζ + Â

†
z− z∗ Â+ B̂

†
ζ − ζ ∗ B̂

)
,

(27)

whereÂ
†
, Â, B̂

†
, andB̂ are the displaced operators

Â = â− α, Â
† = â† − α∗, (28)

B̂ = b̂− β, B̂
† = b̂

† − β∗. (29)

Now, let us examine the supersymmetry transformation of the displaced
operators as follows:

Â→ Â + B̂θ , Â
†→ Â

† + θ B̂
†
, (30)

B̂→ B̂ + Âθ , B̂
†→ B̂

† + θÂ†. (31)

where θ is a nilpotent realG-odd variable, i.e.,θ B̂ = −B̂ θ and θ2 = 0, for
example. This transformation is generated by the Hermitian operator

Ĝ = Â B̂
† + B̂ Â

†
. (32)

In fact, we see

[θĜ, Â] = B̂θ , [θĜ, Â
†
] = θ B̂

†
, (33)

[θĜ, B̂] = Âθ , [θĜ, B̂
†
] = θ Â

†
. (34)

An important point is that the above transformation can be compensated by the
following change of the integration variables:

z→ z + ζθ , z∗ → z∗ + θζ ∗, (35)

ζ → ζ + zθ , ζ ∗ → ζ ∗ + θz∗. (36)

if and only if

sb = sf . (37)

In addition, the graded Jacobian factor defined in terms of the graded determinant
(the superdeterminant) (Berezin, 1987) associated with Eqs. (35) and (36) is equal
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to unity:

detg


1 0 θ 0
0 1 0 θ

θ 0 1 0
0 −θ 0 1

 = det

[(
1 0
0 1

)
−
(
θ 0
0 θ

)(
1 0
0 1

)−1(
θ 0
0 −θ

)]

× det

(
1 0
0 1

)−1

= 1, (38)

and therefore the measure of integrationd2z d2ζ in Eq. (27) remains invariant.
Thus, we conclude that

1̂
(s)
SUSY(α, α∗, β, β∗)

= 1

π2

∫∫
d2z d2ζ exp

[
−s

2
(z∗z+ ζ ∗ζ )+ Â

†
z− z∗ Â+ B̂

†
ζ − ζ ∗ B̂

]
(39)

is the supersymmetric phase-space operator, which is referred to as the super
phase-space operator. The super phase-space distribution function

F (s)
SUSY(α, α∗, β, β∗) = Tr

[
ρ̂1̂

(s)
SUSY(α, α∗, β, β∗)

]
(40)

is now regarded as a superfield. It admits the superfield expansion

F (s)
SUSY(α, α∗, β, β∗) = f0(α, α∗)+ β f ∗1 (α, α∗)+ f1(α, α∗)β∗

+β β∗ f2(α, α∗), (41)

where f0 and f2 are the real-valued functions andf1 and f ∗1 are complexG-odd
functions.

4. SUPERCOHERENT STATES

Using the super phase-space operator in Eq. (39), we can obtain the super-
symmetric generalization of a class of phase-space distribution functions including
the Wigner distribution function (s= 0), the Sudarshan–GlauberP-distribution
function (s= −1), and the HusimiQ-distribution function (s= +1). Here, of par-
ticular interest for us is the supersymmetricQ-representation, since it is expected
to be connected directly with the supercoherent states.

The supercoherent states have repeatedly been discussed in the literature.
Examples are found in Aragone and Zypman (1986), Fatygaet al. (1991),
Jayaramanet al. (1999), and Kosteleckyet al. (1993). Similarly to Fatygaet al.
(1991) and Kosteleckyet al.(1993), we define the supercoherent state as follows:

|α, α∗, β, β∗〉 = exp(̂a†α − α∗â) exp(b̂
†
β − β∗b̂)|0, 0〉, (42)
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where|0, 0〉 is the product of the ground states of the boson and the fermion.α

andα∗ are the ordinary complex variables, whereasβ andβ∗ are the complex
G-odd variables. This is the simultaneous eigenstate ofâ and b̂:

â |α, α∗, β, β∗〉 = α |α, α∗, β, β∗〉, (43)

b̂ |α, α∗, β, β∗〉 = β |α, α∗, β, β∗〉. (44)

It is a normalized state and possesses the (over) completeness

1

π

∫∫
d2α d2β |α, α∗, β, β∗〉〈α, α∗, β, β∗| = 1. (45)

The supercoherent state in Eq. (42) is simply the product of the bosonic and
fermionic coherent states. Based only on this fact, one hardly sees its supersymmet-
ric nature. We wish to clarify this point by showing that, in fact, the supercoherent
state corresponds tô1(+1)

SUSY(α, α∗, β, β∗), which is supersymmetric as shown in
Section 3.

To see the explicit relation between the super phase-space operator1̂
(+1)
SUSY(α,

α∗, β, β∗) and the supercoherent state, let us employ the well-known formula,
exp(X̂ + Ŷ) = exp(X̂) exp(Ŷ − 1

2[X̂, Ŷ]) with [X̂, Ŷ] being ac number, and rewrite
the operator as follows:

1̂
(+1)
SUSY(α, α∗, β, β∗) = 1

π2

∫∫
d2z d2ζ exp(−z∗ Â− ζ ∗ B̂)

× exp(Â
†
z+ B̂

†
ζ ). (46)

Inserting Eq. (45) between the two exponential operators in the integrand in Eq.
(46) and using Eqs. (5) and (17), we find

1̂
(+1)
SUSY(α, α∗, β, β∗)

= 1

π3

∫∫
d2z d2ζ

∫∫
d2α′ d2β ′ exp[(α′∗ − α∗)z− z∗(α′ − α)]

× exp[(β ′∗ − β∗)ζ − ζ ∗(β ′ − β)] |α′, α′∗, β ′, β ′∗〉〈α′, α′∗, β ′, β ′∗|

= 1

π
|α, α∗, β, β∗〉〈α, α∗, β, β∗|. (47)

Therefore, as expected,1̂(+1)
SUSY(α, α∗, β, β∗) corresponds to the supercoherent-state

representation. Conversely, the supersymmetric aspect of the supercoherent state
is thus clarified from the viewpoint of the theory of phase-space representations.

5. CONCLUSION

We have developed the theory of phase-space representations of the boson-
fermion system. We have clarified the supersymmetric structure of the super
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phase-space operators associated with a class of the ordering rules. It has been
shown that the supersymmetric antinormal ordering rule corresponds to the
supercoherent-state representation. In this way, the supersymmetric nature of the
supercoherent state is revealed.
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